Insulin action in the double incretin receptor knockout mouse.
نویسندگان
چکیده
OBJECTIVE The incretins glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide have been postulated to play a role in regulating insulin action, although the mechanisms behind this relationship remain obscure. We used the hyperinsulinemic-euglycemic clamp to determine sites where insulin action may be modulated in double incretin receptor knockout (DIRKO) mice, which lack endogenous incretin action. RESEARCH DESIGN AND METHODS DIRKO and wild-type mice were fed regular chow or high-fat diet for 4 months. Clamps were performed on 5-h-fasted, conscious, unrestrained mice using an arterial catheter for sampling. RESULTS Compared with wild-type mice, chow and high fat-fed DIRKO mice exhibited decreased fat and muscle mass associated with increased energy expenditure and ambulatory activity. Clamp rates of glucose infusion (GIR), endogenous glucose production (endoR(a)), and disappearance (R(d)) were not different in chow-fed wild-type and DIRKO mice, although insulin levels were lower in DIRKO mice. Liver Akt expression was decreased but Akt activation was increased in chow-fed DIRKO compared with wild-type mice. High-fat feeding resulted in fasting hyperinsulinemia and hyperglycemia in wild-type but not in DIRKO mice. GIR, suppression of endoR(a), and stimulation of R(d) were inhibited in high fat-fed wild-type mice but not in DIRKO mice. High-fat feeding resulted in impaired tissue glucose uptake (R(g)) in skeletal muscle of wild-type mice but not of DIRKO mice. Liver and muscle Akt activation was enhanced in high fat-fed DIRKO compared with wild-type mice. CONCLUSIONS In summary, DIRKO mice exhibit enhanced insulin action compared with wild-type mice when fed a regular chow diet and are protected from high-fat diet-induced obesity and insulin resistance.
منابع مشابه
Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors.
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived incretins that potentiate glucose clearance following nutrient ingestion. Elimination of incretin receptor action in GIPR(-/-) or GLP-1R(-/-) mice produces only modest impairment in glucose homeostasis, perhaps due to compensatory upregulation of the remaining incretin. We have now studied glu...
متن کاملGIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice.
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut-derived incretins secreted in response to nutrient ingestion. Both incretins potentiate glucose-dependent insulin secretion and enhance beta-cell mass through regulation of beta-cell proliferation, neogenesis and apoptosis. In contrast, GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion...
متن کاملExtrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure.
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) control glucose homeostasis through well-defined actions on the islet beta cell via stimulation of insulin secretion and preservation and expansion of beta cell mass. We examined the importance of endogenous incretin receptors for control of glucose homeostasis through analysis of Glp1r(...
متن کاملGastric inhibitory polypeptide is the major insulinotropic factor in K(ATP) null mice.
OBJECTIVE ATP-sensitive K(+) (K(ATP)) channels in pancreatic beta-cells are crucial in the regulation of glucose-induced insulin secretion. Recently, K(ATP) channel-deficient mice were generated by genetic disruption of Kir6.2, the pore-forming component of K(ATP) channels, but the mice still showed a significant insulin response after oral glucose loading in vivo. Gastric inhibitory polypeptid...
متن کاملGPR119 regulates murine glucose homeostasis through incretin receptor-dependent and independent mechanisms.
G protein-coupled receptor 119 (GPR119) was originally identified as a β-cell receptor. However, GPR119 activation also promotes incretin secretion and enhances peptide YY action. We examined whether GPR119-dependent control of glucose homeostasis requires preservation of peptidergic pathways in vivo. Insulin secretion was assessed directly in islets, and glucoregulation was examined in wild-ty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2008